Truth Table Questions

1 = True 0 = False

Truth tables come up in exams regularly

08.1 Complete the truth table for the XOR logic gate
[2 marks]

\mathbf{A}	\mathbf{B}	A XOR B
0	0	
0	1	
1	0	
1	1	

Truth Table Questions

1 = True 0 = False

| 0 | 3 | 1 |
| :--- | :--- | :--- | State the name of the logic gate represented by the following truth table.

Input A	Input B	Output
0	0	0
0	1	0
1	0	0
1	1	1

Logic gate \qquad

Truth Table Questions

1 = True 0 = False

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$ Complete the truth table for the AND logic gate.

[1 mark]

\mathbf{A}	\mathbf{B}	A AND B
0	0	
0	1	
1	0	
1	1	

Truth Tables

1 = True
 0 = False

NOT(A AND B)

\mathbf{A}	\mathbf{B}	NOT(A AND B)
1	1	
1	0	
0	1	
0	0	

Can you also:

- write the notation form for the logic statement?
- draw the circuit diagram?

Truth Tables

1 = True
 0 = False

NOT(A AND B)

A	B	A AND B	NOT(A AND B)
1	1		
1	0		
0	1		
0	0		

Can you also:

- write the notation form for the logic statement?
- draw the circuit diagram?

Truth Tables

1 = True
 0 = False

(NOT A) OR B

\mathbf{A}	\mathbf{B}	(NOT A) OR B
1	1	
1	0	
0	1	
0	0	

Can you also:

- write the notation form for the logic statement?
- draw the circuit diagram?

Truth Tables

1 = True
 0 = False

(NOT A) OR B

A	B	NOT A	(NOT A) OR B
1	1		
1	0		
0	1		
0	0		

Can you also:

- write the notation form for the logic statement?
- draw the circuit diagram?

Truth Tables

1 = True
 0 = False

 (A OR B) AND C| A | B | C | (A OR B) AND C |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | |
| 1 | 1 | 0 | |
| 1 | 0 | 1 | |
| 1 | 0 | 0 | |
| 0 | 1 | 1 | |
| 0 | 1 | 0 | |
| 0 | 0 | 1 | |
| 0 | 0 | 0 | |

Truth Tables

1 = True
 0 = False

 (A OR B) AND C| \mathbf{A} | \mathbf{B} | \mathbf{C} | A OR B | (A OR B) AND C |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | | |
| 1 | 1 | 0 | | |
| 1 | 0 | 1 | | |
| 1 | 0 | 0 | | |
| 0 | 1 | 1 | | |
| 0 | 1 | 0 | | |
| 0 | 0 | 1 | | |
| 0 | 0 | 0 | | |

Truth Tables

1 = True
 0 = False

(A AND B) OR NOT C

A	B	C	(A AND B) OR NOT C
1	1	1	
1	1	0	
1	0	1	
1	0	0	
0	1	1	
0	1	0	
0	0	1	
0	0	0	

Truth Tables

1 = True 0 = False

 (A AND B) OR NOT C| A | B | C | $\mathrm{R}=\mathrm{A} A N D B$ | S = NOT C | $\begin{gathered} \text { ROR } S=(\text { A AND B) OR } \\ \text { NOT C } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | | | |
| 1 | 1 | 0 | | | |
| 1 | 0 | 1 | | | |
| 1 | 0 | 0 | | | |
| 0 | 1 | 1 | | | |
| 0 | 1 | 0 | | | |
| 0 | 0 | 1 | | | |
| 0 | 0 | 0 | | | |

Truth Table Questions

1 = True
 0 = False

| $\mathbf{0}$ | 5 | $\mathbf{5}$ Complete the truth table for the Boolean expression: |
| :--- | :--- | :--- | :--- |

(X AND Y) OR (NOT X)
[3 marks]

\mathbf{X}	\mathbf{Y}	\mathbf{X} AND \mathbf{Y}	NOT \mathbf{X}	(X AND Y) OR (NOT X)
0	0			
0	1			
1	0			
1	1			

