
Assembly Language
Assembly language is a low-level programming
language

● limited set of instructions
● used to program directly

○ embedded systems
○ hardware components

● limited structures - iteration, selection,
arrays, subroutines etc...

● each instruction equates to one line of
machine code (one CPU instruction)

Assembly Code

MOVE R2, 0
MOVE R0, MEM8921
MOVE R1, MEM8922
CMP R1, 0 (IS R1=0? IF NOT DO THIS)

ADD R2, R0, R2
SUB R1, R1, 1

STORE MEM8923, R2
HALT

Data at held MEM8921 = 6

Data held at MEM8922 = 7

Note: you don’t need to
know the syntax of
Assembly Code instructions,
just the theory of how it
works.

Assembly Language
Key point:

● each instruction equates to one line of
machine code (one CPU instruction)

This is a 1:1 equivalence (or correspondence)

It means that assembly code is quick to convert
to machine code, so programs run efficiently -
so it’s quicker

Assembly Language
Programs written in assembly code must still be
translated into machine code.

Not all forms of assembly language will work
with all processors - remember, machine code is
specific to the processor.

Assembly Language
Why use assembly code:

● 1:1 equivalence so quick to convert and
process

● suitable for simple processes in embedded
systems

● efficient code - important in very small
systems without lots of memory

● processor specific, so can be tailored to a
specific task

