



## In an **AND** gate, **both** inputs need to be True to get an output of True

| Α | В | Q |
|---|---|---|
| 0 | 0 |   |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 |   |

A AND B

A.B







## In an **OR** gate, **one or more** of the inputs need to be True to get an output of True

| Α | В | Q |
|---|---|---|
| 0 | 0 |   |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 |   |







## In an **XOR** gate, **one** <u>**but**</u> **only one** of the inputs needs to be True to get an output of True XOR stands for **Exclusive OR** A XOR B

| Α | В | Q |  |
|---|---|---|--|
| 0 | 0 |   |  |
| 0 | 1 |   |  |
| 1 | 0 |   |  |
| 1 | 1 |   |  |



## **NOT Gate**



**NOT** gates only have one input

They switch the input to the opposite - so True becomes False and vice-versa



