
Project 3 - Taxi fare

Write a program to calculate a taxi fare:
● allow the user to enter the journey distance in

km
● allow the user to enter the number of

passengers
● calculate the fare by charging:

○ £2 for each passenger, regardless of distance
○ a further £1.50 per km, regardless of how

many passengers
● output the taxi fare

Exam version

Project 3 - Taxi fare
Add in:
● validate the inputs for distance (1 to 250 km) and

passengers (1 to 7). Don’t accept values outside of these
ranges - the user should have to enter again (hint: while
loop(s))

● use sensible error messages
● add a title and welcome message; add a concatenated

output which includes how the fare has been made up
(e.g. “3 passengers at £2 each going 4 km at £1.50 per km
for a total fare of £12.00)

● add in a “late night” extra charge. This will double the
fare

More complex version

Project 3 - Taxi fare

Extension tasks:

A. the fare needs to be doubled if it’s a Sunday and
multiplied by 1.5 if it’s a Saturday. The late night
charge applies on top of this

B. ensure that the program doesn’t crash if the
wrong type of value is entered - e.g. passengers
should be an integer; if the user enters 1.5 the
program should not crash and they should be
told what their error is (hint: try-except)

Complex versions

Project 3 - Taxi fare

The rest of these slides are at Grade 8-9
(OK, maybe 6 or 7 if you want a

challenge)

Proceed at your own risk

Complex versions

Project 3 - Taxi fare

Further Extension:
The distance should be a float data type. It should
then be rounded *up* to the next kilometre (so, 6.8
= 7; 7 = 7; 7.1 = 8)

This is hard to do and requires integer division and
modulus division. Try:

distance = distance // 5 + (distance % 5 > 0)

(see next slide for explanation…)

Grade 8-9 version

Project 3 - Taxi fare
distance = distance // 1 + (distance % 1 > 0)

// is integer division. This gives the whole number but no
decimal value. So, 7.4 // 1 divides 7.4 by 1, but discards
the .4 bit to give just 7.

% is modulus division - which returns just the remainder. 7.4
% 1 returns .4. This is > 0 so the logical outcome of
(distance % 1 > 0) is True - a Boolean value.

Boolean True has the mathematical value 1, so if the
remainder is anything other than 0, 1 gets added at this
point - which has the effect of rounding everything up!

Grade 8-9 version

Project 3 - Taxi fare
Here’s a screenshot of a program I wrote to test this:

Grade 8-9 version

Project 3 - Taxi fare
There is another way using a library:

import math #at the top of the program
distance = math.ceil(distance)

This uses a function library called math. Just like random or
time, it needs to be imported before it can be used.
Function libraries are really helpful - essentially someone
else has done the hard work and produced functions which
have been tested and error checked and will work reliably.

But you do need to know about integer and modulus
division anyway… Ceil stands for ceiling by the way… (and
returns an integer always, not a float)

Grade 8-9 version

