How many/largest/range

Q. How many binary numbers can be represented using 6 bits?

Q. What is the **largest** binary number which can be represented using 6 bits?

Q. What **range** of binary numbers can be represented using 6 bits?

This all involves using the binary sequence:

128 64 32 16 8 4 2 1

This all involves using the binary sequence:

111111 is the biggest binary number you can make with 6 bits

This all involves using the binary sequence:

111111 is the biggest binary number you can make with 6 bits

= 32 + 16 + 8 + 4 + 2 + 1 = ...

This all involves using the binary sequence:

111111 is the biggest binary number you can make with 6 bits

= 32 + 16 + 8 + 4 + 2 + 1 = **63**

Which is one less than the next number in the binary sequence... (this is a shortcut)

This all involves using the binary sequence:

128	64	32	16	8	4	2	1
		1	1	1	1	1	1

If 63 is the biggest number you can make, you can make all the numbers up to 63 with 6 bits. Including 00000000 (zero).

That's 64 numbers

Which is the next number in the binary sequence... (hack)

This all involves using the binary sequence:

So, the **range** of numbers is 0 - 63

Another way of looking at it:

Number of values which can be represented:

128	64	32	16	8	4	2	1
256	128	64	32	16	8	4	2
8 bits	7 bits	6 bits	5 bits	4 bits	3 bits	2 bits	1 bit
2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹

It is always OK to give answers using powers:

6 bits: values = 2^6 ; biggest = 2^6-1 ; range = 0 to 2^6-1