
AQA Computer Science

For exams 2022 onwards 1

3.2 Programming

3.2.1 Data types

Content Additional information Chk
Understand the concept of a data type.

Understand and use the following
appropriately:

• integer
• real (float)
• Boolean
• character
• string.

3.2.2 Programming concepts

Content Additional information Chk
Use, understand and know how the following
statement types can be combined in
programs:

• variable declaration
• constant declaration
• assignment
• iteration
• selection
• subroutine (procedure/function).

The three combining principles (sequence,
iteration/repetition and selection/choice) are
basic to all programming languages.
Students should be able to write programs
using these statement types. They should be
able to interpret algorithms that include
these statement types.
Students should know why named constants
and variables are used.

Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the
start or the end of the iterative structure.

A theoretical understanding of condition(s) at
either end of an iterative structure is
required.
Examples are: FOR; WHILE;
REPEAT/UNTIL; DO/WHILE

Use nested selection and nested iteration
structures.

Use meaningful identifier names and know
why it is important to use them.

Identifier names include names for variables,
constants and subroutine names.

3.2.3 Arithmetic operations in a programming language

Content Additional information Chk
Be familiar with and be able to use:

• addition
• subtraction
• multiplication
• real division
• integer division, including

remainders.

Integer division, including remainders, uses
modular arithmetic, eg:

• Integer division: the integer quotient
of 11 divided by 2 (11 DIV 2) = 5

• Remainder: the remainder when 11
is divided by 2 (11 MOD 2) = 1

AQA Computer Science

For exams 2022 onwards 2

3.2.4 Relational operations in a programming language

Content Additional information Chk
Be familiar with and be able to use:

• equal to
• not equal to
• less than
• greater than
• less than or equal to
• greater than or equal to.

Students should be able to use these
operators within their own programs and be
able to interpret them when used within
algorithms.

In pseudo-code we use the symbols:
=, ≠, <, >, ≤, ≥

3.2.5 Boolean operations in a programming language

Content Additional information Chk
Be familiar with and be able to use:

• NOT
• AND
• OR.

Students should be able to use these
operators, and combinations of these
operators, within conditions for iterative and
selection structures.

3.2.6 Data structures

Content Additional information Chk
Understand the concept of data structures.
Use arrays (or equivalent) in the design of
solutions to simple problems.

Only one and two-dimensional arrays are
required.

Use records (or equivalent) in the design of
solutions to simple problems.

3.2.7 Input/output

Content Additional information Chk
Be able to obtain user input from the
keyboard.

Be able to output data and information from
a program to the computer display.

AQA Computer Science

For exams 2022 onwards 3

3.2.8 String handling operations in a programming language

Content Additional information Chk
Understand and be able to use:

• length
• position
• substring
• concatenation
• convert character to character code
• convert character code to character
• string conversion operations.

Expected string conversion operations:
• string to integer
• string to real
• integer to string
• real to string.

3.2.9 Random number generation in a programming language

Content Additional information Chk
Be able to use random number generation. An understanding of how pseudo-random

numbers are generated is not required.

3.2.10 Structured programming and subroutines (procedures and functions)

Content Additional information Chk
Understand the concept of subroutines. Know that a subroutine is a named ‘out of

line’ block of code that may be executed
(called) by simply writing its name in a
program statement.

Explain the advantages of using subroutines
in programs.

Describe the use of parameters to pass
data within programs.

Students should be able to use subroutines
that require more than one parameter.
Students should be able to describe how
data is passed to a subroutine using
parameters.

Use subroutines that return values to the
calling routine.

Students should be able to describe how
data is passed out of a subroutine using
return values.

Know that subroutines may declare their
own variables, called local variables, and
that local variables usually

• only exist while the subroutine is
executing

• are only accessible within the
subroutine.

Use local variables and explain why it is
good practice to do so.

AQA Computer Science

For exams 2022 onwards 4

Content Additional information Chk
Describe the structured approach to
programming.

Students should be able to describe the
structured approach including modularised
programming, clear, well documented
interfaces (local variables, parameters) and
return values.

Explain the advantages of the structured
approach.

3.2.11 Robust and secure programming

Content Additional information Chk
Be able to write simple data validation
routines.

Students should be able to use data
validation techniques to write simple routines
that check the validity of data being entered
by a user.
The following validation checks are
examples of simple data validation routines:

• checking if an entered string has a
minimum length

• checking if a string is empty
• checking if data entered lies within a

given range (eg between 1 and 10).

Be able to write simple authentication
routines.

Students should be able to write a simple
authentication routine that uses a username
and password.

Understand what is meant by testing in the
context of algorithms and programs.
Be able to correct errors within algorithms
and programs.

Understand what test data is and describe
the following forms of test data:

• normal (typical)
• boundary (extreme)
• erroneous data.

Example of boundary data:
• if data is allowed in the range 1 to 10,

boundary values are 0, 1, 9, 10 – i.e.
either side of the allowed boundary

Be able to select and justify the choice of
suitable test data for a given problem.

Understand that there are different types of
error:

• syntax error
• logic error

Be able to identify and categorise errors
within algorithms and programs.

