
Subroutines

Subroutines are named blocks of code which
exists as sub-programs within a program

They can be “called” from other parts of the
program, the code executes and values can be
“returned” to the main program

They are used for specialised tasks or for tasks
which need to be repeated a number of times

Subroutines

Subroutines are examples of the decomposition
of an algorithm

Decomposition occurs when a problem is
broken down into a series of sub-problems

Each sub-problem may well be a subroutine

Subroutines

In Python, subroutines are implemented using
functions

Subroutines are usually placed at the top of all
program code

def areaRectangle():

Subroutines

SUBROUTINE areaCircle(aRadius)

area <- aRadius * aRadius * pi

return area

ENDSUBROUTINE

SUBROUTINE areaCircle(aRadius)

A parameter is a variable passed from the main
program to the subroutine where it can be used

These can then be used within the subroutine

Name of subroutine
Parameter

SUBROUTINE areaTrig(aHeight, aBase)

Subroutines can have more than one parameter

Name of subroutine
Parameters

SUBROUTINE areaTrig()

Or have no parameters

(in this case the values would probably be
entered by the user inside the subroutine)

Brackets are still needed!

Name of subroutine
No parameters

SUBROUTINE areaTrig(aHeight, aBase)

To “call” this subroutine from another part of
the program you’d write any of:

areaTrig (7, 2) # using values

areaTrig(ht, bs) # using variables

answer <- areaTrig(ht, 4)

assigning to variable

Subroutines

Subroutines can be called from within other
subroutines

ADVANCED: They can even be called from
within themselves (a process called recursion)

