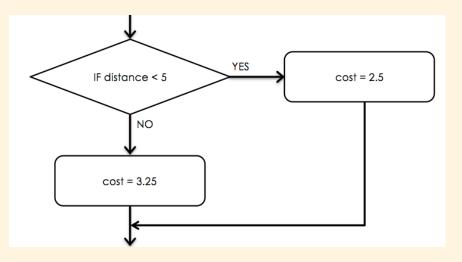
- Key algorithm constructs are:
 Sequence
 Selection
 Repetition
- You also need to be able to identify
 Inputs and Outputs
 Variable declaration and initialisation
 Subprograms
 Data structures such as arrays (lists)


Sequence is simply the order that instructions follow on from each each.

If instructions are out of sequence the result of the algorithm might not be what is intended.

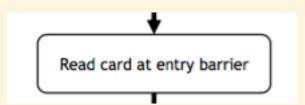
A **trace table** can be used to check that the sequence of instructions is correct.

Selection is the use of a decision within a program used to decide what to do next in a program.

Selection uses IF statements.

IF distance < 5 THEN SET cost TO 2.5
ELSE
SET cost TO 3.25 END IF

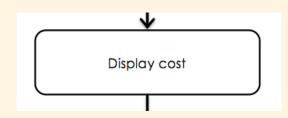
IF quickTime > times[i] THEN
 SET quickTime TO times[i]
END IF


Repetition is a block of code which is executed more than once – it is repeated. Also known as **Iteration**.

Repetition uses FOR or WHILE loops.

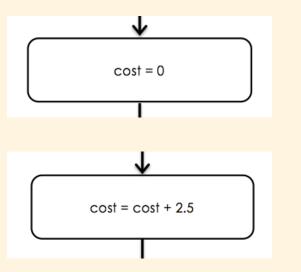
5 6 FOR i FROM 1 TO LENGTH(times) DO 7 SET totalTime TO totalTime + times[i] 8 END FOR 9 10 WHILE check = "N" DO 11 RECEIVE name FROM (STRING) KEYBOARD 12 SEND name TO DISPLAY 13 14 SEND "Is this correct?" TO DISPLAY 15 RECEIVE check FROM (STRING) KEYBOARD 16 END WHILE 17 18

Inputs allow data to be entered into an algorithm – either by a user to through some other kind of input device.


Inputs use **RECEIVE FROM** commands in pseudocode

1 RECEIVE name FROM (STRING) KEYBOARD 2 3 RECEIVE cost FROM (REAL) KEYBOARD 4

Outputs allow data to be sent from the algorithm.


Outputs use **SEND TO** commands in pseudocode

8 9 10	SEND cost TO DISPLAY	
--------------	----------------------	--

Variables are named area of memory which hold data.

- Declaration creates the variable.
- Initialisation sets the first value in a variable

5	SET	cost	то	0		
6						
7	SET	cost	т0	cost	+	2.5

Usually declaration and initialisation occur at the same time

Subprograms break programs down into smaller blocks.

Subprograms are **FUNCTIONS** or **PROCEDURES** in pseudocode.

19		31
20	PROCEDURE calcCost (distance)	32
21	BEGIN PROCEDURE	33
22	SET cost TO 0	34
23	IF distance < 5 THEN	35
24	SET cost TO 2.5	36
25	ELSE	37
26	SET cost TO 3.25	38
27	END IF	
28		
29	SEND cost TO DISPLAY	
30	END PROCEDURE	

FUNCTION updateBalance (balance, cost) BEGIN FUNCTION SET balance TO balance - cost SEND "Your balance is ", balance TO DISPLAY RETURN BALANCE END FUNCTION


In pseudocode, FUNCTIONS return values, PROCEDURES don't

Data Structures hold data in **Arrays** or **Lists**. These allow more than one data item to be held within a named area.

To process Arrays or Lists you usually use a loop to work through the structure.

Э	
6	FOR i FROM 1 TO LENGTH(times) DO
7	SET totalTime TO totalTime + times[i]
8	
9	IF quickTime > times[i] THEN
10	SET quickTime TO times[i]
11	END IF
12	END FOR

You may see **subprograms** and **inputs/ outputs** shown differently on some flowcharts.

These symbols are not on the syllabus so you shouldn't see them in an exam